Basic equivalence relation for scspecseq structures.
Function:
(defun scspecseq-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (scspecseqp acl2::x) (scspecseqp acl2::y)))) (equal (scspecseq-fix acl2::x) (scspecseq-fix acl2::y)))
Theorem:
(defthm scspecseq-equiv-is-an-equivalence (and (booleanp (scspecseq-equiv x y)) (scspecseq-equiv x x) (implies (scspecseq-equiv x y) (scspecseq-equiv y x)) (implies (and (scspecseq-equiv x y) (scspecseq-equiv y z)) (scspecseq-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm scspecseq-equiv-implies-equal-scspecseq-fix-1 (implies (scspecseq-equiv acl2::x x-equiv) (equal (scspecseq-fix acl2::x) (scspecseq-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm scspecseq-fix-under-scspecseq-equiv (scspecseq-equiv (scspecseq-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-scspecseq-fix-1-forward-to-scspecseq-equiv (implies (equal (scspecseq-fix acl2::x) acl2::y) (scspecseq-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-scspecseq-fix-2-forward-to-scspecseq-equiv (implies (equal acl2::x (scspecseq-fix acl2::y)) (scspecseq-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm scspecseq-equiv-of-scspecseq-fix-1-forward (implies (scspecseq-equiv (scspecseq-fix acl2::x) acl2::y) (scspecseq-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm scspecseq-equiv-of-scspecseq-fix-2-forward (implies (scspecseq-equiv acl2::x (scspecseq-fix acl2::y)) (scspecseq-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)