Basic equivalence relation for transaction structures.
Function:
(defun transaction-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (transactionp acl2::x) (transactionp acl2::y)))) (equal (transaction-fix acl2::x) (transaction-fix acl2::y)))
Theorem:
(defthm transaction-equiv-is-an-equivalence (and (booleanp (transaction-equiv x y)) (transaction-equiv x x) (implies (transaction-equiv x y) (transaction-equiv y x)) (implies (and (transaction-equiv x y) (transaction-equiv y z)) (transaction-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm transaction-equiv-implies-equal-transaction-fix-1 (implies (transaction-equiv acl2::x x-equiv) (equal (transaction-fix acl2::x) (transaction-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm transaction-fix-under-transaction-equiv (transaction-equiv (transaction-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-transaction-fix-1-forward-to-transaction-equiv (implies (equal (transaction-fix acl2::x) acl2::y) (transaction-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-transaction-fix-2-forward-to-transaction-equiv (implies (equal acl2::x (transaction-fix acl2::y)) (transaction-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm transaction-equiv-of-transaction-fix-1-forward (implies (transaction-equiv (transaction-fix acl2::x) acl2::y) (transaction-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm transaction-equiv-of-transaction-fix-2-forward (implies (transaction-equiv acl2::x (transaction-fix acl2::y)) (transaction-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)