Basic equivalence relation for funtable structures.
Function:
(defun funtable-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (funtablep acl2::x) (funtablep acl2::y)))) (equal (funtable-fix acl2::x) (funtable-fix acl2::y)))
Theorem:
(defthm funtable-equiv-is-an-equivalence (and (booleanp (funtable-equiv x y)) (funtable-equiv x x) (implies (funtable-equiv x y) (funtable-equiv y x)) (implies (and (funtable-equiv x y) (funtable-equiv y z)) (funtable-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm funtable-equiv-implies-equal-funtable-fix-1 (implies (funtable-equiv acl2::x x-equiv) (equal (funtable-fix acl2::x) (funtable-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm funtable-fix-under-funtable-equiv (funtable-equiv (funtable-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-funtable-fix-1-forward-to-funtable-equiv (implies (equal (funtable-fix acl2::x) acl2::y) (funtable-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-funtable-fix-2-forward-to-funtable-equiv (implies (equal acl2::x (funtable-fix acl2::y)) (funtable-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm funtable-equiv-of-funtable-fix-1-forward (implies (funtable-equiv (funtable-fix acl2::x) acl2::y) (funtable-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm funtable-equiv-of-funtable-fix-2-forward (implies (funtable-equiv acl2::x (funtable-fix acl2::y)) (funtable-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)