Basic equivalence relation for soutcome structures.
Function:
(defun soutcome-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (soutcomep acl2::x) (soutcomep acl2::y)))) (equal (soutcome-fix acl2::x) (soutcome-fix acl2::y)))
Theorem:
(defthm soutcome-equiv-is-an-equivalence (and (booleanp (soutcome-equiv x y)) (soutcome-equiv x x) (implies (soutcome-equiv x y) (soutcome-equiv y x)) (implies (and (soutcome-equiv x y) (soutcome-equiv y z)) (soutcome-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm soutcome-equiv-implies-equal-soutcome-fix-1 (implies (soutcome-equiv acl2::x x-equiv) (equal (soutcome-fix acl2::x) (soutcome-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm soutcome-fix-under-soutcome-equiv (soutcome-equiv (soutcome-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-soutcome-fix-1-forward-to-soutcome-equiv (implies (equal (soutcome-fix acl2::x) acl2::y) (soutcome-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-soutcome-fix-2-forward-to-soutcome-equiv (implies (equal acl2::x (soutcome-fix acl2::y)) (soutcome-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm soutcome-equiv-of-soutcome-fix-1-forward (implies (soutcome-equiv (soutcome-fix acl2::x) acl2::y) (soutcome-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm soutcome-equiv-of-soutcome-fix-2-forward (implies (soutcome-equiv acl2::x (soutcome-fix acl2::y)) (soutcome-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)