Basic theorems about funenvp, generated by std::deflist.
Theorem:
(defthm funenvp-of-cons (equal (funenvp (cons acl2::a acl2::x)) (and (funscopep acl2::a) (funenvp acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-cdr-when-funenvp (implies (funenvp (double-rewrite acl2::x)) (funenvp (cdr acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-when-not-consp (implies (not (consp acl2::x)) (equal (funenvp acl2::x) (not acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm funscopep-of-car-when-funenvp (implies (funenvp acl2::x) (funscopep (car acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-when-funenvp-compound-recognizer (implies (funenvp acl2::x) (true-listp acl2::x)) :rule-classes :compound-recognizer)
Theorem:
(defthm funenvp-of-list-fix (implies (funenvp acl2::x) (funenvp (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-sfix (iff (funenvp (sfix acl2::x)) (or (funenvp acl2::x) (not (setp acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-insert (iff (funenvp (insert acl2::a acl2::x)) (and (funenvp (sfix acl2::x)) (funscopep acl2::a))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-delete (implies (funenvp acl2::x) (funenvp (delete acl2::k acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-mergesort (iff (funenvp (mergesort acl2::x)) (funenvp (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-union (iff (funenvp (union acl2::x acl2::y)) (and (funenvp (sfix acl2::x)) (funenvp (sfix acl2::y)))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-intersect-1 (implies (funenvp acl2::x) (funenvp (intersect acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-intersect-2 (implies (funenvp acl2::y) (funenvp (intersect acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-difference (implies (funenvp acl2::x) (funenvp (difference acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-duplicated-members (implies (funenvp acl2::x) (funenvp (duplicated-members acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-rev (equal (funenvp (rev acl2::x)) (funenvp (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-append (equal (funenvp (append acl2::a acl2::b)) (and (funenvp (list-fix acl2::a)) (funenvp acl2::b))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-rcons (iff (funenvp (rcons acl2::a acl2::x)) (and (funscopep acl2::a) (funenvp (list-fix acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm funscopep-when-member-equal-of-funenvp (and (implies (and (member-equal acl2::a acl2::x) (funenvp acl2::x)) (funscopep acl2::a)) (implies (and (funenvp acl2::x) (member-equal acl2::a acl2::x)) (funscopep acl2::a))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-when-subsetp-equal (and (implies (and (subsetp-equal acl2::x acl2::y) (funenvp acl2::y)) (equal (funenvp acl2::x) (true-listp acl2::x))) (implies (and (funenvp acl2::y) (subsetp-equal acl2::x acl2::y)) (equal (funenvp acl2::x) (true-listp acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-set-difference-equal (implies (funenvp acl2::x) (funenvp (set-difference-equal acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-intersection-equal-1 (implies (funenvp (double-rewrite acl2::x)) (funenvp (intersection-equal acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-intersection-equal-2 (implies (funenvp (double-rewrite acl2::y)) (funenvp (intersection-equal acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-union-equal (equal (funenvp (union-equal acl2::x acl2::y)) (and (funenvp (list-fix acl2::x)) (funenvp (double-rewrite acl2::y)))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-take (implies (funenvp (double-rewrite acl2::x)) (iff (funenvp (take acl2::n acl2::x)) (or (funscopep nil) (<= (nfix acl2::n) (len acl2::x))))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-repeat (iff (funenvp (repeat acl2::n acl2::x)) (or (funscopep acl2::x) (zp acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm funscopep-of-nth-when-funenvp (implies (funenvp acl2::x) (funscopep (nth acl2::n acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-update-nth (implies (funenvp (double-rewrite acl2::x)) (iff (funenvp (update-nth acl2::n acl2::y acl2::x)) (and (funscopep acl2::y) (or (<= (nfix acl2::n) (len acl2::x)) (funscopep nil))))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-butlast (implies (funenvp (double-rewrite acl2::x)) (funenvp (butlast acl2::x acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-nthcdr (implies (funenvp (double-rewrite acl2::x)) (funenvp (nthcdr acl2::n acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-last (implies (funenvp (double-rewrite acl2::x)) (funenvp (last acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-remove (implies (funenvp acl2::x) (funenvp (remove acl2::a acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm funenvp-of-revappend (equal (funenvp (revappend acl2::x acl2::y)) (and (funenvp (list-fix acl2::x)) (funenvp acl2::y))) :rule-classes ((:rewrite)))