Recognizer for function-set.
(function-setp x) → *
Function:
(defun function-setp (x) (declare (xargs :guard t)) (if (atom x) (null x) (and (functionp (car x)) (or (null (cdr x)) (and (consp (cdr x)) (acl2::fast-<< (car x) (cadr x)) (function-setp (cdr x)))))))
Theorem:
(defthm booleanp-offunction-setp (booleanp (function-setp x)))
Theorem:
(defthm setp-when-function-setp (implies (function-setp x) (setp x)) :rule-classes (:rewrite))
Theorem:
(defthm functionp-of-head-when-function-setp (implies (function-setp x) (equal (functionp (head x)) (not (emptyp x)))))
Theorem:
(defthm function-setp-of-tail-when-function-setp (implies (function-setp x) (function-setp (tail x))))
Theorem:
(defthm function-setp-of-insert (equal (function-setp (insert a x)) (and (functionp a) (function-setp (sfix x)))))
Theorem:
(defthm functionp-when-in-function-setp-binds-free-x (implies (and (in a x) (function-setp x)) (functionp a)))
Theorem:
(defthm not-in-function-setp-when-not-functionp (implies (and (function-setp x) (not (functionp a))) (not (in a x))))
Theorem:
(defthm function-setp-of-union (equal (function-setp (union x y)) (and (function-setp (sfix x)) (function-setp (sfix y)))))
Theorem:
(defthm function-setp-of-intersect (implies (and (function-setp x) (function-setp y)) (function-setp (intersect x y))))
Theorem:
(defthm function-setp-of-difference (implies (function-setp x) (function-setp (difference x y))))
Theorem:
(defthm function-setp-of-delete (implies (function-setp x) (function-setp (delete a x))))