Basic equivalence relation for stat structures.
Function:
(defun stat-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (statp acl2::x) (statp acl2::y)))) (equal (stat-fix acl2::x) (stat-fix acl2::y)))
Theorem:
(defthm stat-equiv-is-an-equivalence (and (booleanp (stat-equiv x y)) (stat-equiv x x) (implies (stat-equiv x y) (stat-equiv y x)) (implies (and (stat-equiv x y) (stat-equiv y z)) (stat-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm stat-equiv-implies-equal-stat-fix-1 (implies (stat-equiv acl2::x x-equiv) (equal (stat-fix acl2::x) (stat-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm stat-fix-under-stat-equiv (stat-equiv (stat-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-stat-fix-1-forward-to-stat-equiv (implies (equal (stat-fix acl2::x) acl2::y) (stat-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-stat-fix-2-forward-to-stat-equiv (implies (equal acl2::x (stat-fix acl2::y)) (stat-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm stat-equiv-of-stat-fix-1-forward (implies (stat-equiv (stat-fix acl2::x) acl2::y) (stat-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm stat-equiv-of-stat-fix-2-forward (implies (stat-equiv acl2::x (stat-fix acl2::y)) (stat-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)