Fixing function for rflagsbits bit structures.
(rflagsbits-fix x) → fty::fixed
Function:
(defun rflagsbits-fix$inline (x) (declare (xargs :guard (rflagsbits-p x))) (mbe :logic (loghead 32 x) :exec x))
Theorem:
(defthm rflagsbits-p-of-rflagsbits-fix (b* ((fty::fixed (rflagsbits-fix$inline x))) (rflagsbits-p fty::fixed)) :rule-classes :rewrite)
Theorem:
(defthm rflagsbits-fix-when-rflagsbits-p (implies (rflagsbits-p x) (equal (rflagsbits-fix x) x)))
Function:
(defun rflagsbits-equiv$inline (x y) (declare (xargs :guard (and (rflagsbits-p x) (rflagsbits-p y)))) (equal (rflagsbits-fix x) (rflagsbits-fix y)))
Theorem:
(defthm rflagsbits-equiv-is-an-equivalence (and (booleanp (rflagsbits-equiv x y)) (rflagsbits-equiv x x) (implies (rflagsbits-equiv x y) (rflagsbits-equiv y x)) (implies (and (rflagsbits-equiv x y) (rflagsbits-equiv y z)) (rflagsbits-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm rflagsbits-equiv-implies-equal-rflagsbits-fix-1 (implies (rflagsbits-equiv x x-equiv) (equal (rflagsbits-fix x) (rflagsbits-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm rflagsbits-fix-under-rflagsbits-equiv (rflagsbits-equiv (rflagsbits-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))