Access the |X86ISA|::|RES2| field of a xcr0bits bit structure.
(xcr0bits->res2 x) → res2
Function:
(defun xcr0bits->res2$inline (x) (declare (xargs :guard (xcr0bits-p x))) (mbe :logic (let ((x (xcr0bits-fix x))) (part-select x :low 10 :width 7)) :exec (the (unsigned-byte 7) (logand (the (unsigned-byte 7) 127) (the (unsigned-byte 54) (ash (the (unsigned-byte 64) x) -10))))))
Theorem:
(defthm 7bits-p-of-xcr0bits->res2 (b* ((res2 (xcr0bits->res2$inline x))) (7bits-p res2)) :rule-classes :rewrite)
Theorem:
(defthm xcr0bits->res2$inline-of-xcr0bits-fix-x (equal (xcr0bits->res2$inline (xcr0bits-fix x)) (xcr0bits->res2$inline x)))
Theorem:
(defthm xcr0bits->res2$inline-xcr0bits-equiv-congruence-on-x (implies (xcr0bits-equiv x x-equiv) (equal (xcr0bits->res2$inline x) (xcr0bits->res2$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm xcr0bits->res2-of-xcr0bits (equal (xcr0bits->res2 (xcr0bits fpu/mmx-state sse-state avx-state bndreg-state bndcsr-state opmask-state zmm_hi256-state hi16_zmm-state res1 pkru-state res2 tileconfig-state tiledata-state res4)) (7bits-fix res2)))
Theorem:
(defthm xcr0bits->res2-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x xcr0bits-equiv-under-mask) (xcr0bits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 130048) 0)) (equal (xcr0bits->res2 x) (xcr0bits->res2 y))))