Access the |X86ISA|::|RES4| field of a xcr0bits bit structure.
(xcr0bits->res4 x) → res4
Function:
(defun xcr0bits->res4$inline (x) (declare (xargs :guard (xcr0bits-p x))) (mbe :logic (let ((x (xcr0bits-fix x))) (part-select x :low 19 :width 45)) :exec (the (unsigned-byte 45) (logand (the (unsigned-byte 45) 35184372088831) (the (unsigned-byte 45) (ash (the (unsigned-byte 64) x) -19))))))
Theorem:
(defthm 45bits-p-of-xcr0bits->res4 (b* ((res4 (xcr0bits->res4$inline x))) (45bits-p res4)) :rule-classes :rewrite)
Theorem:
(defthm xcr0bits->res4$inline-of-xcr0bits-fix-x (equal (xcr0bits->res4$inline (xcr0bits-fix x)) (xcr0bits->res4$inline x)))
Theorem:
(defthm xcr0bits->res4$inline-xcr0bits-equiv-congruence-on-x (implies (xcr0bits-equiv x x-equiv) (equal (xcr0bits->res4$inline x) (xcr0bits->res4$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm xcr0bits->res4-of-xcr0bits (equal (xcr0bits->res4 (xcr0bits fpu/mmx-state sse-state avx-state bndreg-state bndcsr-state opmask-state zmm_hi256-state hi16_zmm-state res1 pkru-state res2 tileconfig-state tiledata-state res4)) (45bits-fix res4)))
Theorem:
(defthm xcr0bits->res4-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x xcr0bits-equiv-under-mask) (xcr0bits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 18446744073709027328) 0)) (equal (xcr0bits->res4 x) (xcr0bits->res4 y))))