Access the |X86ISA|::|OPR| field of a prefixes bit structure.
(prefixes->opr x) → opr
Function:
(defun prefixes->opr$inline (x) (declare (xargs :guard (prefixes-p x))) (mbe :logic (let ((x (prefixes-fix x))) (part-select x :low 28 :width 8)) :exec (the (unsigned-byte 8) (logand (the (unsigned-byte 8) 255) (the (unsigned-byte 24) (ash (the (unsigned-byte 52) x) -28))))))
Theorem:
(defthm 8bits-p-of-prefixes->opr (b* ((opr (prefixes->opr$inline x))) (8bits-p opr)) :rule-classes :rewrite)
Theorem:
(defthm prefixes->opr$inline-of-prefixes-fix-x (equal (prefixes->opr$inline (prefixes-fix x)) (prefixes->opr$inline x)))
Theorem:
(defthm prefixes->opr$inline-prefixes-equiv-congruence-on-x (implies (prefixes-equiv x x-equiv) (equal (prefixes->opr$inline x) (prefixes->opr$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm prefixes->opr-of-prefixes (equal (prefixes->opr (prefixes num lck rep seg opr adr nxt)) (8bits-fix opr)))
Theorem:
(defthm prefixes->opr-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x prefixes-equiv-under-mask) (prefixes-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 68451041280) 0)) (equal (prefixes->opr x) (prefixes->opr y))))