Access the |X86ISA|::|RESERVED| field of a mxcsrbits bit structure.
(mxcsrbits->reserved x) → reserved
Function:
(defun mxcsrbits->reserved$inline (x) (declare (xargs :guard (mxcsrbits-p x))) (mbe :logic (let ((x (mxcsrbits-fix x))) (part-select x :low 16 :width 16)) :exec (the (unsigned-byte 16) (logand (the (unsigned-byte 16) 65535) (the (unsigned-byte 16) (ash (the (unsigned-byte 32) x) -16))))))
Theorem:
(defthm 16bits-p-of-mxcsrbits->reserved (b* ((reserved (mxcsrbits->reserved$inline x))) (16bits-p reserved)) :rule-classes :rewrite)
Theorem:
(defthm mxcsrbits->reserved$inline-of-mxcsrbits-fix-x (equal (mxcsrbits->reserved$inline (mxcsrbits-fix x)) (mxcsrbits->reserved$inline x)))
Theorem:
(defthm mxcsrbits->reserved$inline-mxcsrbits-equiv-congruence-on-x (implies (mxcsrbits-equiv x x-equiv) (equal (mxcsrbits->reserved$inline x) (mxcsrbits->reserved$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm mxcsrbits->reserved-of-mxcsrbits (equal (mxcsrbits->reserved (mxcsrbits ie de ze oe ue pe daz im dm zm om um pm rc ftz reserved)) (16bits-fix reserved)))
Theorem:
(defthm mxcsrbits->reserved-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x mxcsrbits-equiv-under-mask) (mxcsrbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 4294901760) 0)) (equal (mxcsrbits->reserved x) (mxcsrbits->reserved y))))