Access the |X86ISA|::|IM| field of a mxcsrbits bit structure.
(mxcsrbits->im x) → im
Function:
(defun mxcsrbits->im$inline (x) (declare (xargs :guard (mxcsrbits-p x))) (mbe :logic (let ((x (mxcsrbits-fix x))) (part-select x :low 7 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 25) (ash (the (unsigned-byte 32) x) -7))))))
Theorem:
(defthm bitp-of-mxcsrbits->im (b* ((im (mxcsrbits->im$inline x))) (bitp im)) :rule-classes :rewrite)
Theorem:
(defthm mxcsrbits->im$inline-of-mxcsrbits-fix-x (equal (mxcsrbits->im$inline (mxcsrbits-fix x)) (mxcsrbits->im$inline x)))
Theorem:
(defthm mxcsrbits->im$inline-mxcsrbits-equiv-congruence-on-x (implies (mxcsrbits-equiv x x-equiv) (equal (mxcsrbits->im$inline x) (mxcsrbits->im$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm mxcsrbits->im-of-mxcsrbits (equal (mxcsrbits->im (mxcsrbits ie de ze oe ue pe daz im dm zm om um pm rc ftz reserved)) (bfix im)))
Theorem:
(defthm mxcsrbits->im-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x mxcsrbits-equiv-under-mask) (mxcsrbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 128) 0)) (equal (mxcsrbits->im x) (mxcsrbits->im y))))