Update the |X86ISA|::|OM| field of a mxcsrbits bit structure.
(!mxcsrbits->om om x) → new-x
Function:
(defun !mxcsrbits->om$inline (om x) (declare (xargs :guard (and (bitp om) (mxcsrbits-p x)))) (mbe :logic (b* ((om (mbe :logic (bfix om) :exec om)) (x (mxcsrbits-fix x))) (part-install om x :width 1 :low 10)) :exec (the (unsigned-byte 32) (logior (the (unsigned-byte 32) (logand (the (unsigned-byte 32) x) (the (signed-byte 12) -1025))) (the (unsigned-byte 11) (ash (the (unsigned-byte 1) om) 10))))))
Theorem:
(defthm mxcsrbits-p-of-!mxcsrbits->om (b* ((new-x (!mxcsrbits->om$inline om x))) (mxcsrbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !mxcsrbits->om$inline-of-bfix-om (equal (!mxcsrbits->om$inline (bfix om) x) (!mxcsrbits->om$inline om x)))
Theorem:
(defthm !mxcsrbits->om$inline-bit-equiv-congruence-on-om (implies (bit-equiv om om-equiv) (equal (!mxcsrbits->om$inline om x) (!mxcsrbits->om$inline om-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !mxcsrbits->om$inline-of-mxcsrbits-fix-x (equal (!mxcsrbits->om$inline om (mxcsrbits-fix x)) (!mxcsrbits->om$inline om x)))
Theorem:
(defthm !mxcsrbits->om$inline-mxcsrbits-equiv-congruence-on-x (implies (mxcsrbits-equiv x x-equiv) (equal (!mxcsrbits->om$inline om x) (!mxcsrbits->om$inline om x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !mxcsrbits->om-is-mxcsrbits (equal (!mxcsrbits->om om x) (change-mxcsrbits x :om om)))
Theorem:
(defthm mxcsrbits->om-of-!mxcsrbits->om (b* ((?new-x (!mxcsrbits->om$inline om x))) (equal (mxcsrbits->om new-x) (bfix om))))
Theorem:
(defthm !mxcsrbits->om-equiv-under-mask (b* ((?new-x (!mxcsrbits->om$inline om x))) (mxcsrbits-equiv-under-mask new-x x -1025)))