Recognizer for variable-substitution.
(variable-substitutionp x) → *
Function:
(defun variable-substitutionp (x) (declare (xargs :guard t)) (if (atom x) (null x) (and (consp (car x)) (identifierp (caar x)) (expressionp (cdar x)) (or (null (cdr x)) (and (consp (cdr x)) (consp (cadr x)) (acl2::fast-<< (caar x) (caadr x)) (variable-substitutionp (cdr x)))))))
Theorem:
(defthm booleanp-of-variable-substitutionp (booleanp (variable-substitutionp x)))
Theorem:
(defthm mapp-when-variable-substitutionp (implies (variable-substitutionp x) (omap::mapp x)) :rule-classes (:rewrite :forward-chaining))
Theorem:
(defthm variable-substitutionp-of-tail (implies (variable-substitutionp x) (variable-substitutionp (omap::tail x))))
Theorem:
(defthm identifierp-of-head-key-when-variable-substitutionp (implies (and (variable-substitutionp x) (not (omap::emptyp x))) (identifierp (mv-nth 0 (omap::head x)))))
Theorem:
(defthm expressionp-of-head-val-when-variable-substitutionp (implies (and (variable-substitutionp x) (not (omap::emptyp x))) (expressionp (mv-nth 1 (omap::head x)))))
Theorem:
(defthm variable-substitutionp-of-update (implies (and (variable-substitutionp x) (identifierp k) (expressionp v)) (variable-substitutionp (omap::update k v x))))
Theorem:
(defthm variable-substitutionp-of-update* (implies (and (variable-substitutionp x) (variable-substitutionp y)) (variable-substitutionp (omap::update* x y))))
Theorem:
(defthm variable-substitutionp-of-delete (implies (variable-substitutionp x) (variable-substitutionp (omap::delete k x))))
Theorem:
(defthm variable-substitutionp-of-delete* (implies (variable-substitutionp x) (variable-substitutionp (omap::delete* k x))))
Theorem:
(defthm identifierp-when-assoc-variable-substitutionp-binds-free-x (implies (and (omap::assoc k x) (variable-substitutionp x)) (identifierp k)))
Theorem:
(defthm identifierp-of-car-of-assoc-variable-substitutionp (implies (and (variable-substitutionp x) (omap::assoc k x)) (identifierp (car (omap::assoc k x)))))
Theorem:
(defthm expressionp-of-cdr-of-assoc-variable-substitutionp (implies (and (variable-substitutionp x) (omap::assoc k x)) (expressionp (cdr (omap::assoc k x)))))
Theorem:
(defthm expressionp-of-lookup-when-variable-substitutionp (implies (and (variable-substitutionp x) (omap::assoc k x)) (expressionp (omap::lookup k x))))