Basic equivalence relation for initializer structures.
Function:
(defun initializer-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (initializerp acl2::x) (initializerp acl2::y)))) (equal (initializer-fix acl2::x) (initializer-fix acl2::y)))
Theorem:
(defthm initializer-equiv-is-an-equivalence (and (booleanp (initializer-equiv x y)) (initializer-equiv x x) (implies (initializer-equiv x y) (initializer-equiv y x)) (implies (and (initializer-equiv x y) (initializer-equiv y z)) (initializer-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm initializer-equiv-implies-equal-initializer-fix-1 (implies (initializer-equiv acl2::x x-equiv) (equal (initializer-fix acl2::x) (initializer-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm initializer-fix-under-initializer-equiv (initializer-equiv (initializer-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-initializer-fix-1-forward-to-initializer-equiv (implies (equal (initializer-fix acl2::x) acl2::y) (initializer-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-initializer-fix-2-forward-to-initializer-equiv (implies (equal acl2::x (initializer-fix acl2::y)) (initializer-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm initializer-equiv-of-initializer-fix-1-forward (implies (initializer-equiv (initializer-fix acl2::x) acl2::y) (initializer-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm initializer-equiv-of-initializer-fix-2-forward (implies (initializer-equiv acl2::x (initializer-fix acl2::y)) (initializer-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)