Basic equivalence relation for bool structures.
Function:
(defun bool-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (boolp acl2::x) (boolp acl2::y)))) (equal (bool-fix acl2::x) (bool-fix acl2::y)))
Theorem:
(defthm bool-equiv-is-an-equivalence (and (booleanp (bool-equiv x y)) (bool-equiv x x) (implies (bool-equiv x y) (bool-equiv y x)) (implies (and (bool-equiv x y) (bool-equiv y z)) (bool-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm bool-equiv-implies-equal-bool-fix-1 (implies (bool-equiv acl2::x x-equiv) (equal (bool-fix acl2::x) (bool-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm bool-fix-under-bool-equiv (bool-equiv (bool-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-bool-fix-1-forward-to-bool-equiv (implies (equal (bool-fix acl2::x) acl2::y) (bool-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-bool-fix-2-forward-to-bool-equiv (implies (equal acl2::x (bool-fix acl2::y)) (bool-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm bool-equiv-of-bool-fix-1-forward (implies (bool-equiv (bool-fix acl2::x) acl2::y) (bool-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm bool-equiv-of-bool-fix-2-forward (implies (bool-equiv acl2::x (bool-fix acl2::y)) (bool-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)