Basic equivalence relation for bexp structures.
Function:
(defun bexp-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (bexpp acl2::x) (bexpp acl2::y)))) (equal (bexp-fix acl2::x) (bexp-fix acl2::y)))
Theorem:
(defthm bexp-equiv-is-an-equivalence (and (booleanp (bexp-equiv x y)) (bexp-equiv x x) (implies (bexp-equiv x y) (bexp-equiv y x)) (implies (and (bexp-equiv x y) (bexp-equiv y z)) (bexp-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm bexp-equiv-implies-equal-bexp-fix-1 (implies (bexp-equiv acl2::x x-equiv) (equal (bexp-fix acl2::x) (bexp-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm bexp-fix-under-bexp-equiv (bexp-equiv (bexp-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-bexp-fix-1-forward-to-bexp-equiv (implies (equal (bexp-fix acl2::x) acl2::y) (bexp-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-bexp-fix-2-forward-to-bexp-equiv (implies (equal acl2::x (bexp-fix acl2::y)) (bexp-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm bexp-equiv-of-bexp-fix-1-forward (implies (bexp-equiv (bexp-fix acl2::x) acl2::y) (bexp-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm bexp-equiv-of-bexp-fix-2-forward (implies (bexp-equiv acl2::x (bexp-fix acl2::y)) (bexp-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)