Division of a value of type
Function:
(defun div-sshort-schar (x y) (declare (xargs :guard (and (sshortp x) (scharp y) (div-sshort-schar-okp x y)))) (div-sint-sint (sint-from-sshort x) (sint-from-schar y)))
Theorem:
(defthm sintp-of-div-sshort-schar (sintp (div-sshort-schar x y)))
Theorem:
(defthm div-sshort-schar-of-sshort-fix-x (equal (div-sshort-schar (sshort-fix x) y) (div-sshort-schar x y)))
Theorem:
(defthm div-sshort-schar-sshort-equiv-congruence-on-x (implies (sshort-equiv x x-equiv) (equal (div-sshort-schar x y) (div-sshort-schar x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm div-sshort-schar-of-schar-fix-y (equal (div-sshort-schar x (schar-fix y)) (div-sshort-schar x y)))
Theorem:
(defthm div-sshort-schar-schar-equiv-congruence-on-y (implies (schar-equiv y y-equiv) (equal (div-sshort-schar x y) (div-sshort-schar x y-equiv))) :rule-classes :congruence)