Equality of a value of type
Function:
(defun eq-sint-sshort (x y) (declare (xargs :guard (and (sintp x) (sshortp y)))) (eq-sint-sint x (sint-from-sshort y)))
Theorem:
(defthm sintp-of-eq-sint-sshort (sintp (eq-sint-sshort x y)))
Theorem:
(defthm eq-sint-sshort-of-sint-fix-x (equal (eq-sint-sshort (sint-fix x) y) (eq-sint-sshort x y)))
Theorem:
(defthm eq-sint-sshort-sint-equiv-congruence-on-x (implies (sint-equiv x x-equiv) (equal (eq-sint-sshort x y) (eq-sint-sshort x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm eq-sint-sshort-of-sshort-fix-y (equal (eq-sint-sshort x (sshort-fix y)) (eq-sint-sshort x y)))
Theorem:
(defthm eq-sint-sshort-sshort-equiv-congruence-on-y (implies (sshort-equiv y y-equiv) (equal (eq-sint-sshort x y) (eq-sint-sshort x y-equiv))) :rule-classes :congruence)