Basic equivalence relation for fconst structures.
Function:
(defun fconst-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (fconstp acl2::x) (fconstp acl2::y)))) (equal (fconst-fix acl2::x) (fconst-fix acl2::y)))
Theorem:
(defthm fconst-equiv-is-an-equivalence (and (booleanp (fconst-equiv x y)) (fconst-equiv x x) (implies (fconst-equiv x y) (fconst-equiv y x)) (implies (and (fconst-equiv x y) (fconst-equiv y z)) (fconst-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm fconst-equiv-implies-equal-fconst-fix-1 (implies (fconst-equiv acl2::x x-equiv) (equal (fconst-fix acl2::x) (fconst-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm fconst-fix-under-fconst-equiv (fconst-equiv (fconst-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-fconst-fix-1-forward-to-fconst-equiv (implies (equal (fconst-fix acl2::x) acl2::y) (fconst-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-fconst-fix-2-forward-to-fconst-equiv (implies (equal acl2::x (fconst-fix acl2::y)) (fconst-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fconst-equiv-of-fconst-fix-1-forward (implies (fconst-equiv (fconst-fix acl2::x) acl2::y) (fconst-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fconst-equiv-of-fconst-fix-2-forward (implies (fconst-equiv acl2::x (fconst-fix acl2::y)) (fconst-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)