Basic equivalence relation for sign structures.
Function:
(defun sign-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (signp acl2::x) (signp acl2::y)))) (equal (sign-fix acl2::x) (sign-fix acl2::y)))
Theorem:
(defthm sign-equiv-is-an-equivalence (and (booleanp (sign-equiv x y)) (sign-equiv x x) (implies (sign-equiv x y) (sign-equiv y x)) (implies (and (sign-equiv x y) (sign-equiv y z)) (sign-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm sign-equiv-implies-equal-sign-fix-1 (implies (sign-equiv acl2::x x-equiv) (equal (sign-fix acl2::x) (sign-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm sign-fix-under-sign-equiv (sign-equiv (sign-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-sign-fix-1-forward-to-sign-equiv (implies (equal (sign-fix acl2::x) acl2::y) (sign-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-sign-fix-2-forward-to-sign-equiv (implies (equal acl2::x (sign-fix acl2::y)) (sign-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm sign-equiv-of-sign-fix-1-forward (implies (sign-equiv (sign-fix acl2::x) acl2::y) (sign-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm sign-equiv-of-sign-fix-2-forward (implies (sign-equiv acl2::x (sign-fix acl2::y)) (sign-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)