Basic equivalence relation for defobject-info structures.
Function:
(defun defobject-info-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (defobject-infop acl2::x) (defobject-infop acl2::y)))) (equal (defobject-info-fix acl2::x) (defobject-info-fix acl2::y)))
Theorem:
(defthm defobject-info-equiv-is-an-equivalence (and (booleanp (defobject-info-equiv x y)) (defobject-info-equiv x x) (implies (defobject-info-equiv x y) (defobject-info-equiv y x)) (implies (and (defobject-info-equiv x y) (defobject-info-equiv y z)) (defobject-info-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm defobject-info-equiv-implies-equal-defobject-info-fix-1 (implies (defobject-info-equiv acl2::x x-equiv) (equal (defobject-info-fix acl2::x) (defobject-info-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm defobject-info-fix-under-defobject-info-equiv (defobject-info-equiv (defobject-info-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-defobject-info-fix-1-forward-to-defobject-info-equiv (implies (equal (defobject-info-fix acl2::x) acl2::y) (defobject-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-defobject-info-fix-2-forward-to-defobject-info-equiv (implies (equal acl2::x (defobject-info-fix acl2::y)) (defobject-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm defobject-info-equiv-of-defobject-info-fix-1-forward (implies (defobject-info-equiv (defobject-info-fix acl2::x) acl2::y) (defobject-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm defobject-info-equiv-of-defobject-info-fix-2-forward (implies (defobject-info-equiv acl2::x (defobject-info-fix acl2::y)) (defobject-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)