Fixing function for defobject-info structures.
(defobject-info-fix x) → new-x
Function:
(defun defobject-info-fix$inline (x) (declare (xargs :guard (defobject-infop x))) (let ((__function__ 'defobject-info-fix)) (declare (ignorable __function__)) (mbe :logic (b* ((name-ident (ident-fix (cdr (std::da-nth 0 x)))) (name-symbol (symbol-fix (cdr (std::da-nth 1 x)))) (type (type-fix (cdr (std::da-nth 2 x)))) (init (initer-option-fix (cdr (std::da-nth 3 x)))) (recognizer (symbol-fix (cdr (std::da-nth 4 x)))) (initializer (symbol-fix (cdr (std::da-nth 5 x)))) (call (acl2::pseudo-event-form-fix (cdr (std::da-nth 6 x))))) (list (cons 'name-ident name-ident) (cons 'name-symbol name-symbol) (cons 'type type) (cons 'init init) (cons 'recognizer recognizer) (cons 'initializer initializer) (cons 'call call))) :exec x)))
Theorem:
(defthm defobject-infop-of-defobject-info-fix (b* ((new-x (defobject-info-fix$inline x))) (defobject-infop new-x)) :rule-classes :rewrite)
Theorem:
(defthm defobject-info-fix-when-defobject-infop (implies (defobject-infop x) (equal (defobject-info-fix x) x)))
Function:
(defun defobject-info-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (defobject-infop acl2::x) (defobject-infop acl2::y)))) (equal (defobject-info-fix acl2::x) (defobject-info-fix acl2::y)))
Theorem:
(defthm defobject-info-equiv-is-an-equivalence (and (booleanp (defobject-info-equiv x y)) (defobject-info-equiv x x) (implies (defobject-info-equiv x y) (defobject-info-equiv y x)) (implies (and (defobject-info-equiv x y) (defobject-info-equiv y z)) (defobject-info-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm defobject-info-equiv-implies-equal-defobject-info-fix-1 (implies (defobject-info-equiv acl2::x x-equiv) (equal (defobject-info-fix acl2::x) (defobject-info-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm defobject-info-fix-under-defobject-info-equiv (defobject-info-equiv (defobject-info-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-defobject-info-fix-1-forward-to-defobject-info-equiv (implies (equal (defobject-info-fix acl2::x) acl2::y) (defobject-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-defobject-info-fix-2-forward-to-defobject-info-equiv (implies (equal acl2::x (defobject-info-fix acl2::y)) (defobject-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm defobject-info-equiv-of-defobject-info-fix-1-forward (implies (defobject-info-equiv (defobject-info-fix acl2::x) acl2::y) (defobject-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm defobject-info-equiv-of-defobject-info-fix-2-forward (implies (defobject-info-equiv acl2::x (defobject-info-fix acl2::y)) (defobject-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)