Basic equivalence relation for objdesign-option structures.
Function:
(defun objdesign-option-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (objdesign-optionp acl2::x) (objdesign-optionp acl2::y)))) (equal (objdesign-option-fix acl2::x) (objdesign-option-fix acl2::y)))
Theorem:
(defthm objdesign-option-equiv-is-an-equivalence (and (booleanp (objdesign-option-equiv x y)) (objdesign-option-equiv x x) (implies (objdesign-option-equiv x y) (objdesign-option-equiv y x)) (implies (and (objdesign-option-equiv x y) (objdesign-option-equiv y z)) (objdesign-option-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm objdesign-option-equiv-implies-equal-objdesign-option-fix-1 (implies (objdesign-option-equiv acl2::x x-equiv) (equal (objdesign-option-fix acl2::x) (objdesign-option-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm objdesign-option-fix-under-objdesign-option-equiv (objdesign-option-equiv (objdesign-option-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-objdesign-option-fix-1-forward-to-objdesign-option-equiv (implies (equal (objdesign-option-fix acl2::x) acl2::y) (objdesign-option-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-objdesign-option-fix-2-forward-to-objdesign-option-equiv (implies (equal acl2::x (objdesign-option-fix acl2::y)) (objdesign-option-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm objdesign-option-equiv-of-objdesign-option-fix-1-forward (implies (objdesign-option-equiv (objdesign-option-fix acl2::x) acl2::y) (objdesign-option-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm objdesign-option-equiv-of-objdesign-option-fix-2-forward (implies (objdesign-option-equiv acl2::x (objdesign-option-fix acl2::y)) (objdesign-option-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)