Recognizer for bip32-path-set.
(bip32-path-setp x) → *
Function:
(defun bip32-path-setp (x) (declare (xargs :guard t)) (if (atom x) (null x) (and (ubyte32-listp (car x)) (or (null (cdr x)) (and (consp (cdr x)) (acl2::fast-<< (car x) (cadr x)) (bip32-path-setp (cdr x)))))))
Theorem:
(defthm booleanp-ofbip32-path-setp (booleanp (bip32-path-setp x)))
Theorem:
(defthm setp-when-bip32-path-setp (implies (bip32-path-setp x) (setp x)) :rule-classes (:rewrite))
Theorem:
(defthm ubyte32-listp-of-head-when-bip32-path-setp (implies (bip32-path-setp x) (ubyte32-listp (head x))))
Theorem:
(defthm bip32-path-setp-of-tail-when-bip32-path-setp (implies (bip32-path-setp x) (bip32-path-setp (tail x))))
Theorem:
(defthm bip32-path-setp-of-insert (equal (bip32-path-setp (insert a x)) (and (ubyte32-listp a) (bip32-path-setp (sfix x)))))
Theorem:
(defthm ubyte32-listp-when-in-bip32-path-setp-binds-free-x (implies (and (in a x) (bip32-path-setp x)) (ubyte32-listp a)))
Theorem:
(defthm not-in-bip32-path-setp-when-not-ubyte32-listp (implies (and (bip32-path-setp x) (not (ubyte32-listp a))) (not (in a x))))
Theorem:
(defthm bip32-path-setp-of-union (equal (bip32-path-setp (union x y)) (and (bip32-path-setp (sfix x)) (bip32-path-setp (sfix y)))))
Theorem:
(defthm bip32-path-setp-of-intersect (implies (and (bip32-path-setp x) (bip32-path-setp y)) (bip32-path-setp (intersect x y))))
Theorem:
(defthm bip32-path-setp-of-difference (implies (bip32-path-setp x) (bip32-path-setp (difference x y))))
Theorem:
(defthm bip32-path-setp-of-delete (implies (bip32-path-setp x) (bip32-path-setp (delete a x))))