Recognizer for identifier-set.
(identifier-setp x) → *
Function:
(defun identifier-setp (x) (declare (xargs :guard t)) (if (atom x) (null x) (and (identifierp (car x)) (or (null (cdr x)) (and (consp (cdr x)) (acl2::fast-<< (car x) (cadr x)) (identifier-setp (cdr x)))))))
Theorem:
(defthm booleanp-ofidentifier-setp (booleanp (identifier-setp x)))
Theorem:
(defthm setp-when-identifier-setp (implies (identifier-setp x) (setp x)) :rule-classes (:rewrite))
Theorem:
(defthm identifierp-of-head-when-identifier-setp (implies (identifier-setp x) (equal (identifierp (head x)) (not (emptyp x)))))
Theorem:
(defthm identifier-setp-of-tail-when-identifier-setp (implies (identifier-setp x) (identifier-setp (tail x))))
Theorem:
(defthm identifier-setp-of-insert (equal (identifier-setp (insert a x)) (and (identifierp a) (identifier-setp (sfix x)))))
Theorem:
(defthm identifierp-when-in-identifier-setp-binds-free-x (implies (and (in a x) (identifier-setp x)) (identifierp a)))
Theorem:
(defthm not-in-identifier-setp-when-not-identifierp (implies (and (identifier-setp x) (not (identifierp a))) (not (in a x))))
Theorem:
(defthm identifier-setp-of-union (equal (identifier-setp (union x y)) (and (identifier-setp (sfix x)) (identifier-setp (sfix y)))))
Theorem:
(defthm identifier-setp-of-intersect (implies (and (identifier-setp x) (identifier-setp y)) (identifier-setp (intersect x y))))
Theorem:
(defthm identifier-setp-of-difference (implies (identifier-setp x) (identifier-setp (difference x y))))
Theorem:
(defthm identifier-setp-of-delete (implies (identifier-setp x) (identifier-setp (delete a x))))