Basic equivalence relation for cstate structures.
Function:
(defun cstate-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (cstatep acl2::x) (cstatep acl2::y)))) (equal (cstate-fix acl2::x) (cstate-fix acl2::y)))
Theorem:
(defthm cstate-equiv-is-an-equivalence (and (booleanp (cstate-equiv x y)) (cstate-equiv x x) (implies (cstate-equiv x y) (cstate-equiv y x)) (implies (and (cstate-equiv x y) (cstate-equiv y z)) (cstate-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm cstate-equiv-implies-equal-cstate-fix-1 (implies (cstate-equiv acl2::x x-equiv) (equal (cstate-fix acl2::x) (cstate-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm cstate-fix-under-cstate-equiv (cstate-equiv (cstate-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-cstate-fix-1-forward-to-cstate-equiv (implies (equal (cstate-fix acl2::x) acl2::y) (cstate-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-cstate-fix-2-forward-to-cstate-equiv (implies (equal acl2::x (cstate-fix acl2::y)) (cstate-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm cstate-equiv-of-cstate-fix-1-forward (implies (cstate-equiv (cstate-fix acl2::x) acl2::y) (cstate-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm cstate-equiv-of-cstate-fix-2-forward (implies (cstate-equiv acl2::x (cstate-fix acl2::y)) (cstate-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)