Update the |X86ISA|::|AC| field of a rflagsbits bit structure.
(!rflagsbits->ac ac x) → new-x
Function:
(defun !rflagsbits->ac$inline (ac x) (declare (xargs :guard (and (bitp ac) (rflagsbits-p x)))) (mbe :logic (b* ((ac (mbe :logic (bfix ac) :exec ac)) (x (rflagsbits-fix x))) (part-install ac x :width 1 :low 18)) :exec (the (unsigned-byte 32) (logior (the (unsigned-byte 32) (logand (the (unsigned-byte 32) x) (the (signed-byte 20) -262145))) (the (unsigned-byte 19) (ash (the (unsigned-byte 1) ac) 18))))))
Theorem:
(defthm rflagsbits-p-of-!rflagsbits->ac (b* ((new-x (!rflagsbits->ac$inline ac x))) (rflagsbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !rflagsbits->ac$inline-of-bfix-ac (equal (!rflagsbits->ac$inline (bfix ac) x) (!rflagsbits->ac$inline ac x)))
Theorem:
(defthm !rflagsbits->ac$inline-bit-equiv-congruence-on-ac (implies (bit-equiv ac ac-equiv) (equal (!rflagsbits->ac$inline ac x) (!rflagsbits->ac$inline ac-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !rflagsbits->ac$inline-of-rflagsbits-fix-x (equal (!rflagsbits->ac$inline ac (rflagsbits-fix x)) (!rflagsbits->ac$inline ac x)))
Theorem:
(defthm !rflagsbits->ac$inline-rflagsbits-equiv-congruence-on-x (implies (rflagsbits-equiv x x-equiv) (equal (!rflagsbits->ac$inline ac x) (!rflagsbits->ac$inline ac x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !rflagsbits->ac-is-rflagsbits (equal (!rflagsbits->ac ac x) (change-rflagsbits x :ac ac)))
Theorem:
(defthm rflagsbits->ac-of-!rflagsbits->ac (b* ((?new-x (!rflagsbits->ac$inline ac x))) (equal (rflagsbits->ac new-x) (bfix ac))))
Theorem:
(defthm !rflagsbits->ac-equiv-under-mask (b* ((?new-x (!rflagsbits->ac$inline ac x))) (rflagsbits-equiv-under-mask new-x x -262145)))