Update the |X86ISA|::|UM| field of a mxcsrbits bit structure.
(!mxcsrbits->um um x) → new-x
Function:
(defun !mxcsrbits->um$inline (um x) (declare (xargs :guard (and (bitp um) (mxcsrbits-p x)))) (mbe :logic (b* ((um (mbe :logic (bfix um) :exec um)) (x (mxcsrbits-fix x))) (part-install um x :width 1 :low 11)) :exec (the (unsigned-byte 32) (logior (the (unsigned-byte 32) (logand (the (unsigned-byte 32) x) (the (signed-byte 13) -2049))) (the (unsigned-byte 12) (ash (the (unsigned-byte 1) um) 11))))))
Theorem:
(defthm mxcsrbits-p-of-!mxcsrbits->um (b* ((new-x (!mxcsrbits->um$inline um x))) (mxcsrbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !mxcsrbits->um$inline-of-bfix-um (equal (!mxcsrbits->um$inline (bfix um) x) (!mxcsrbits->um$inline um x)))
Theorem:
(defthm !mxcsrbits->um$inline-bit-equiv-congruence-on-um (implies (bit-equiv um um-equiv) (equal (!mxcsrbits->um$inline um x) (!mxcsrbits->um$inline um-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !mxcsrbits->um$inline-of-mxcsrbits-fix-x (equal (!mxcsrbits->um$inline um (mxcsrbits-fix x)) (!mxcsrbits->um$inline um x)))
Theorem:
(defthm !mxcsrbits->um$inline-mxcsrbits-equiv-congruence-on-x (implies (mxcsrbits-equiv x x-equiv) (equal (!mxcsrbits->um$inline um x) (!mxcsrbits->um$inline um x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !mxcsrbits->um-is-mxcsrbits (equal (!mxcsrbits->um um x) (change-mxcsrbits x :um um)))
Theorem:
(defthm mxcsrbits->um-of-!mxcsrbits->um (b* ((?new-x (!mxcsrbits->um$inline um x))) (equal (mxcsrbits->um new-x) (bfix um))))
Theorem:
(defthm !mxcsrbits->um-equiv-under-mask (b* ((?new-x (!mxcsrbits->um$inline um x))) (mxcsrbits-equiv-under-mask new-x x -2049)))