Access the |X86ISA|::|UE| field of a mxcsrbits bit structure.
(mxcsrbits->ue x) → ue
Function:
(defun mxcsrbits->ue$inline (x) (declare (xargs :guard (mxcsrbits-p x))) (mbe :logic (let ((x (mxcsrbits-fix x))) (part-select x :low 4 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 28) (ash (the (unsigned-byte 32) x) -4))))))
Theorem:
(defthm bitp-of-mxcsrbits->ue (b* ((ue (mxcsrbits->ue$inline x))) (bitp ue)) :rule-classes :rewrite)
Theorem:
(defthm mxcsrbits->ue$inline-of-mxcsrbits-fix-x (equal (mxcsrbits->ue$inline (mxcsrbits-fix x)) (mxcsrbits->ue$inline x)))
Theorem:
(defthm mxcsrbits->ue$inline-mxcsrbits-equiv-congruence-on-x (implies (mxcsrbits-equiv x x-equiv) (equal (mxcsrbits->ue$inline x) (mxcsrbits->ue$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm mxcsrbits->ue-of-mxcsrbits (equal (mxcsrbits->ue (mxcsrbits ie de ze oe ue pe daz im dm zm om um pm rc ftz reserved)) (bfix ue)))
Theorem:
(defthm mxcsrbits->ue-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x mxcsrbits-equiv-under-mask) (mxcsrbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 16) 0)) (equal (mxcsrbits->ue x) (mxcsrbits->ue y))))