Update the |X86ISA|::|UE| field of a mxcsrbits bit structure.
(!mxcsrbits->ue ue x) → new-x
Function:
(defun !mxcsrbits->ue$inline (ue x) (declare (xargs :guard (and (bitp ue) (mxcsrbits-p x)))) (mbe :logic (b* ((ue (mbe :logic (bfix ue) :exec ue)) (x (mxcsrbits-fix x))) (part-install ue x :width 1 :low 4)) :exec (the (unsigned-byte 32) (logior (the (unsigned-byte 32) (logand (the (unsigned-byte 32) x) (the (signed-byte 6) -17))) (the (unsigned-byte 5) (ash (the (unsigned-byte 1) ue) 4))))))
Theorem:
(defthm mxcsrbits-p-of-!mxcsrbits->ue (b* ((new-x (!mxcsrbits->ue$inline ue x))) (mxcsrbits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !mxcsrbits->ue$inline-of-bfix-ue (equal (!mxcsrbits->ue$inline (bfix ue) x) (!mxcsrbits->ue$inline ue x)))
Theorem:
(defthm !mxcsrbits->ue$inline-bit-equiv-congruence-on-ue (implies (bit-equiv ue ue-equiv) (equal (!mxcsrbits->ue$inline ue x) (!mxcsrbits->ue$inline ue-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !mxcsrbits->ue$inline-of-mxcsrbits-fix-x (equal (!mxcsrbits->ue$inline ue (mxcsrbits-fix x)) (!mxcsrbits->ue$inline ue x)))
Theorem:
(defthm !mxcsrbits->ue$inline-mxcsrbits-equiv-congruence-on-x (implies (mxcsrbits-equiv x x-equiv) (equal (!mxcsrbits->ue$inline ue x) (!mxcsrbits->ue$inline ue x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !mxcsrbits->ue-is-mxcsrbits (equal (!mxcsrbits->ue ue x) (change-mxcsrbits x :ue ue)))
Theorem:
(defthm mxcsrbits->ue-of-!mxcsrbits->ue (b* ((?new-x (!mxcsrbits->ue$inline ue x))) (equal (mxcsrbits->ue new-x) (bfix ue))))
Theorem:
(defthm !mxcsrbits->ue-equiv-under-mask (b* ((?new-x (!mxcsrbits->ue$inline ue x))) (mxcsrbits-equiv-under-mask new-x x -17)))