Basic rules for moving reciprocals across inequalities, comparing reciprocals, and canceling reciprocals by multiplying across an inequality.
Theorem:
(defthm /-preserves-positive (implies (fc (real/rationalp x)) (equal (< 0 (/ x)) (< 0 x))))
Theorem:
(defthm /-preserves-negative (implies (fc (real/rationalp x)) (equal (< (/ x) 0) (< x 0))))
Theorem:
(defthm /-inverts-order-1 (implies (and (< 0 x) (< x y) (fc (real/rationalp x)) (fc (real/rationalp y))) (< (/ y) (/ x))))
Theorem:
(defthm /-inverts-order-2 (implies (and (< y 0) (< x y) (fc (real/rationalp x)) (fc (real/rationalp y))) (< (/ y) (/ x))))
Theorem:
(defthm /-inverts-weak-order (implies (and (< 0 x) (<= x y) (fc (real/rationalp x)) (fc (real/rationalp y))) (not (< (/ x) (/ y)))))
Theorem:
(defthm <-unary-/-negative-left (implies (and (< x 0) (fc (real/rationalp x)) (fc (real/rationalp y))) (equal (< (/ x) y) (< (* x y) 1))))
Theorem:
(defthm <-unary-/-negative-right (implies (and (< x 0) (fc (real/rationalp x)) (fc (real/rationalp y))) (equal (< y (/ x)) (< 1 (* x y)))))
Theorem:
(defthm <-unary-/-positive-left (implies (and (< 0 x) (fc (real/rationalp x)) (fc (real/rationalp y))) (equal (< (/ x) y) (< 1 (* x y)))))
Theorem:
(defthm <-unary-/-positive-right (implies (and (< 0 x) (fc (real/rationalp x)) (fc (real/rationalp y))) (equal (< y (/ x)) (< (* x y) 1))))
Theorem:
(defthm <-*-/-right (implies (and (< 0 y) (fc (real/rationalp a)) (fc (real/rationalp x)) (fc (real/rationalp y))) (equal (< a (* x (/ y))) (< (* a y) x))))
Theorem:
(defthm <-*-/-right-commuted (implies (and (< 0 y) (fc (real/rationalp x)) (fc (real/rationalp y)) (fc (real/rationalp a))) (equal (< x (* (/ y) a)) (< (* x y) a))))
Theorem:
(defthm <-*-/-left (implies (and (< 0 y) (fc (real/rationalp x)) (fc (real/rationalp y)) (fc (real/rationalp a))) (equal (< (* x (/ y)) a) (< x (* a y)))))
Theorem:
(defthm <-*-/-left-commuted (implies (and (< 0 y) (fc (real/rationalp x)) (fc (real/rationalp y)) (fc (real/rationalp a))) (equal (< (* (/ y) x) a) (< x (* y a)))))