(sparseint$-compare x y) → sign
Function:
(defun sparseint$-compare$inline (x y) (declare (xargs :guard (and (sparseint$-p x) (sparseint$-p y)))) (let ((__function__ 'sparseint$-compare)) (declare (ignorable __function__)) (sparseint$-compare-offset x 0 y)))
Theorem:
(defthm integerp-of-sparseint$-compare (b* ((sign (sparseint$-compare$inline x y))) (integerp sign)) :rule-classes :type-prescription)
Theorem:
(defthm sparseint$-compare-correct (b* ((?sign (sparseint$-compare$inline x y))) (equal sign (compare (sparseint$-val x) (sparseint$-val y)))))
Theorem:
(defthm sparseint$-compare$inline-of-sparseint$-fix-x (equal (sparseint$-compare$inline (sparseint$-fix x) y) (sparseint$-compare$inline x y)))
Theorem:
(defthm sparseint$-compare$inline-sparseint$-equiv-congruence-on-x (implies (sparseint$-equiv x x-equiv) (equal (sparseint$-compare$inline x y) (sparseint$-compare$inline x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm sparseint$-compare$inline-of-sparseint$-fix-y (equal (sparseint$-compare$inline x (sparseint$-fix y)) (sparseint$-compare$inline x y)))
Theorem:
(defthm sparseint$-compare$inline-sparseint$-equiv-congruence-on-y (implies (sparseint$-equiv y y-equiv) (equal (sparseint$-compare$inline x y) (sparseint$-compare$inline x y-equiv))) :rule-classes :congruence)