Extract the
We leave this enabled; we would usually not expect to try to reason about it.
Function:
(defun acl2::nth-slice32$inline (n x) (declare (xargs :guard (and (natp n) (integerp x)))) (let ((__function__ 'nth-slice32)) (declare (ignorable __function__)) (mbe :logic (logand (ash (ifix x) (* (nfix n) -32)) (1- (expt 2 32))) :exec (the (unsigned-byte 32) (logand (ash x (the (integer * 0) (* n -32))) 4294967295)))))
Theorem:
(defthm acl2::natp-of-nth-slice32 (b* ((slice (acl2::nth-slice32$inline n x))) (natp slice)) :rule-classes :type-prescription)
Theorem:
(defthm nat-equiv-implies-equal-nth-slice32-1 (implies (nat-equiv n n-equiv) (equal (nth-slice32 n x) (nth-slice32 n-equiv x))) :rule-classes (:congruence))
Theorem:
(defthm int-equiv-implies-equal-nth-slice32-2 (implies (int-equiv x x-equiv) (equal (nth-slice32 n x) (nth-slice32 n x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm unsigned-byte-p-32-of-nth-slice32 (unsigned-byte-p 32 (nth-slice32 n x)))
Theorem:
(defthm nth-slice32-is-nth-slice (equal (nth-slice32 n x) (nth-slice 32 n x)))