(repeated-revappend n x y) → *
Function:
(defun repeated-revappend (n x y) (declare (xargs :guard (natp n))) (let ((acl2::__function__ 'repeated-revappend)) (declare (ignorable acl2::__function__)) (if (zp n) y (repeated-revappend (- n 1) x (acl2::revappend-without-guard x y)))))
Theorem:
(defthm character-listp-of-repeated-revappend (implies (and (character-listp x) (character-listp y)) (character-listp (repeated-revappend n x y))))
Theorem:
(defthm repeated-revappend-of-nfix-n (equal (repeated-revappend (nfix n) x y) (repeated-revappend n x y)))
Theorem:
(defthm repeated-revappend-nat-equiv-congruence-on-n (implies (acl2::nat-equiv n n-equiv) (equal (repeated-revappend n x y) (repeated-revappend n-equiv x y))) :rule-classes :congruence)