Access the |AIGNET|::|HASHP| field of a gatesimp bit structure.
(gatesimp->hashp x) → hashp
Function:
(defun gatesimp->hashp (x) (declare (xargs :guard (gatesimp-p x))) (mbe :logic (let ((x (gatesimp-fix x))) (bit->bool (part-select x :low 0 :width 1))) :exec (bit->bool (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 6) x))))))
Theorem:
(defthm booleanp-of-gatesimp->hashp (b* ((hashp (gatesimp->hashp x))) (booleanp hashp)) :rule-classes :rewrite)
Theorem:
(defthm gatesimp->hashp-of-gatesimp-fix-x (equal (gatesimp->hashp (gatesimp-fix x)) (gatesimp->hashp x)))
Theorem:
(defthm gatesimp->hashp-gatesimp-equiv-congruence-on-x (implies (gatesimp-equiv x x-equiv) (equal (gatesimp->hashp x) (gatesimp->hashp x-equiv))) :rule-classes :congruence)
Theorem:
(defthm gatesimp->hashp-of-gatesimp (equal (gatesimp->hashp (gatesimp hashp level xor-mode)) (acl2::bool-fix hashp)))
Theorem:
(defthm gatesimp->hashp-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x gatesimp-equiv-under-mask) (gatesimp-equiv-under-mask x acl2::y fty::mask) (equal (logand (lognot fty::mask) 1) 0)) (equal (gatesimp->hashp x) (gatesimp->hashp acl2::y))))