Basic equivalence relation for constprop-config structures.
Function:
(defun constprop-config-equiv$inline (x acl2::y) (declare (xargs :guard (and (constprop-config-p x) (constprop-config-p acl2::y)))) (equal (constprop-config-fix x) (constprop-config-fix acl2::y)))
Theorem:
(defthm constprop-config-equiv-is-an-equivalence (and (booleanp (constprop-config-equiv x y)) (constprop-config-equiv x x) (implies (constprop-config-equiv x y) (constprop-config-equiv y x)) (implies (and (constprop-config-equiv x y) (constprop-config-equiv y z)) (constprop-config-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm constprop-config-equiv-implies-equal-constprop-config-fix-1 (implies (constprop-config-equiv x x-equiv) (equal (constprop-config-fix x) (constprop-config-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm constprop-config-fix-under-constprop-config-equiv (constprop-config-equiv (constprop-config-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-constprop-config-fix-1-forward-to-constprop-config-equiv (implies (equal (constprop-config-fix x) acl2::y) (constprop-config-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-constprop-config-fix-2-forward-to-constprop-config-equiv (implies (equal x (constprop-config-fix acl2::y)) (constprop-config-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm constprop-config-equiv-of-constprop-config-fix-1-forward (implies (constprop-config-equiv (constprop-config-fix x) acl2::y) (constprop-config-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm constprop-config-equiv-of-constprop-config-fix-2-forward (implies (constprop-config-equiv x (constprop-config-fix acl2::y)) (constprop-config-equiv x acl2::y)) :rule-classes :forward-chaining)