(s32v-zero-rows row s32v) → new-s32v
Function:
(defun s32v-zero-rows (row s32v) (declare (xargs :stobjs (s32v))) (declare (xargs :guard (natp row))) (declare (xargs :guard (<= row (s32v-nrows s32v)))) (let ((__function__ 's32v-zero-rows)) (declare (ignorable __function__)) (b* (((when (mbe :logic (zp (- (s32v-nrows s32v) (nfix row))) :exec (eql row (s32v-nrows s32v)))) s32v) (s32v (s32v-zero (lnfix row) s32v))) (s32v-zero-rows (+ 1 (lnfix row)) s32v))))
Theorem:
(defthm s32v-nrows-of-s32v-zero-rows (b* ((?new-s32v (s32v-zero-rows row s32v))) (equal (len (stobjs::2darr->rows new-s32v)) (len (stobjs::2darr->rows s32v)))))
Theorem:
(defthm s32v-ncols-of-s32v-zero-rows (b* ((?new-s32v (s32v-zero-rows row s32v))) (equal (stobjs::2darr->ncols new-s32v) (stobjs::2darr->ncols s32v))))
Theorem:
(defthm s32v-zero-rows-of-nfix-row (equal (s32v-zero-rows (nfix row) s32v) (s32v-zero-rows row s32v)))
Theorem:
(defthm s32v-zero-rows-nat-equiv-congruence-on-row (implies (nat-equiv row row-equiv) (equal (s32v-zero-rows row s32v) (s32v-zero-rows row-equiv s32v))) :rule-classes :congruence)