Level 2 Contradiction Rule 1 and Idempotence Rule, Both Directions.
(aig-and-pass2 x y) → (mv status arg1 arg2)
Function:
(defun aig-and-pass2$inline (x y) (declare (xargs :guard t)) (let ((__function__ 'aig-and-pass2)) (declare (ignorable __function__)) (b* (((mv status a b) (aig-and-pass2a y x)) ((unless (eq status :fail)) (mv status a b))) (aig-and-pass2a x y))))
Theorem:
(defthm aig-and-pass2-correct (b* (((mv ?status ?arg1 ?arg2) (aig-and-pass2$inline x y))) (equal (and (aig-eval arg1 env) (aig-eval arg2 env)) (and (aig-eval x env) (aig-eval y env)))) :rule-classes nil)
Theorem:
(defthm aig-and-pass2-never-reduced (b* (((mv ?status ?arg1 ?arg2) (aig-and-pass2$inline x y))) (not (equal status :reduced))))
Theorem:
(defthm aig-and-pass2-subterm-convention (b* (((mv ?status ?arg1 ?arg2) (aig-and-pass2$inline x y))) (implies (equal status :subterm) (equal arg2 arg1))))
Theorem:
(defthm aig-and-pass2-normalize-status (b* (((mv ?status ?arg1 ?arg2) (aig-and-pass2$inline x y))) (implies (and (not (equal status :subterm)) (not (equal status :reduced))) (and (equal status :fail) (equal arg1 x) (equal arg2 y)))))