(t-aig-not a) negates the FAIG
(t-aig-not a) → *
Function:
(defun t-aig-not$inline (a) (declare (xargs :guard t)) (let ((__function__ 't-aig-not)) (declare (ignorable __function__)) (b* (((faig a1 a0) a)) (cons a0 a1))))
Theorem:
(defthm faig-eval-of-t-aig-not (equal (faig-eval (t-aig-not a) env) (t-aig-not (faig-eval a env))))
Theorem:
(defthm faig-fix-equiv-implies-equal-t-aig-not-1 (implies (faig-fix-equiv a a-equiv) (equal (t-aig-not a) (t-aig-not a-equiv))) :rule-classes (:congruence))
Theorem:
(defthm faig-equiv-implies-faig-equiv-t-aig-not-1 (implies (faig-equiv a a-equiv) (faig-equiv (t-aig-not a) (t-aig-not a-equiv))) :rule-classes (:congruence))