Basic theorems about faig-restrict.
Theorem:
(defthm faig-eval-of-faig-restrict (equal (faig-eval (faig-restrict x al1) al2) (faig-eval x (append (aig-eval-alist al1 al2) al2))))
Theorem:
(defthm aig-alist-equiv-implies-faig-equiv-faig-restrict-2 (implies (aig-alist-equiv al al-equiv) (faig-equiv (faig-restrict x al) (faig-restrict x al-equiv))) :rule-classes (:congruence))
Theorem:
(defthm alist-equiv-implies-equal-faig-restrict-2 (implies (alist-equiv env env-equiv) (equal (faig-restrict x env) (faig-restrict x env-equiv))) :rule-classes (:congruence))
Theorem:
(defthm faig-equiv-implies-faig-equiv-faig-restrict-1 (implies (faig-equiv x x-equiv) (faig-equiv (faig-restrict x al) (faig-restrict x-equiv al))) :rule-classes (:congruence))
Theorem:
(defthm faig-restrict-faig-restrict (faig-equiv (faig-restrict (faig-restrict x al1) al2) (faig-restrict x (append (aig-restrict-alist al1 al2) al2))))