Basic theorems about faig-compose.
Theorem:
(defthm faig-eval-of-faig-compose (equal (faig-eval (faig-compose x al1) al2) (faig-eval x (aig-eval-alist al1 al2))))
Theorem:
(defthm faig-equiv-implies-faig-equiv-faig-compose-1 (implies (faig-equiv x x-equiv) (faig-equiv (faig-compose x al) (faig-compose x-equiv al))) :rule-classes (:congruence))
Theorem:
(defthm aig-alist-equiv-implies-faig-equiv-faig-compose-2 (implies (aig-alist-equiv al al-equiv) (faig-equiv (faig-compose x al) (faig-compose x al-equiv))) :rule-classes (:congruence))
Theorem:
(defthm alist-equiv-implies-equal-faig-compose-2 (implies (alist-equiv env env-equiv) (equal (faig-compose x env) (faig-compose x env-equiv))) :rule-classes (:congruence))