Weaker version of element equivalence for four-valued alists.
This is a universal equivalence, introduced using def-universal-equiv.
Function:
(defun 4v-cdr-equiv (x y) (and (4v-equiv (cdr x) (cdr y))))
Function:
(defun 4v-cdr-equiv (x y) (and (4v-equiv (cdr x) (cdr y))))
Theorem:
(defthm 4v-cdr-equiv-is-an-equivalence (and (booleanp (4v-cdr-equiv x y)) (4v-cdr-equiv x x) (implies (4v-cdr-equiv x y) (4v-cdr-equiv y x)) (implies (and (4v-cdr-equiv x y) (4v-cdr-equiv y z)) (4v-cdr-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm 4v-cdr-equiv-implies-4v-equiv-cdr-1 (implies (4v-cdr-equiv x x-equiv) (4v-equiv (cdr x) (cdr x-equiv))) :rule-classes (:congruence))