(aabf-logeqv-ss a b man) → (mv a=b new-man)
Function:
(defun aabf-logeqv-ss (a b man) (declare (xargs :guard (and (true-listp a) (true-listp b)))) (declare (xargs :guard (and (aabflist-p a man) (aabflist-p b man)))) (let ((__function__ 'aabf-logeqv-ss)) (declare (ignorable __function__)) (b* (((mv af ar aend) (aabf-first/rest/end a)) ((mv bf br bend) (aabf-first/rest/end b)) ((mv c man) (aabf-iff af bf man)) ((when (and aend bend)) (mv (list c) man))) (aabf-nest (aabf-scons c (aabf-logeqv-ss ar br)) man))))
Theorem:
(defthm trivial-theorem-about-aabf-logeqv-ss (b* nil (b* ((?ignore (aabf-logeqv-ss a b man))) t)) :rule-classes nil)
Theorem:
(defthm true-listp-of-aabf-logeqv-ss.a=b (b* (((mv ?a=b ?new-man) (aabf-logeqv-ss a b man))) (true-listp a=b)) :rule-classes :type-prescription)
Theorem:
(defthm aabf-extension-p-of-aabf-logeqv-ss (b* (((mv ?a=b ?new-man) (aabf-logeqv-ss a b man))) (aabf-extension-p new-man man)))
Theorem:
(defthm aabf-p-of-aabf-logeqv-ss (b* (((mv a=b new-man) (aabf-logeqv-ss a b man))) (implies (and (aabflist-p a man) (aabflist-p b man)) (and (aabflist-p a=b new-man)))))
Theorem:
(defthm aabf-eval-of-aabf-logeqv-ss (b* (((mv a=b new-man) (aabf-logeqv-ss a b man))) (implies (and (aabflist-p a man) (aabflist-p b man)) (and (equal (bools->int (aabflist-eval a=b env new-man)) (logeqv (bools->int (aabflist-eval a env man)) (bools->int (aabflist-eval b env man))))))))
Theorem:
(defthm aabf-pred-of-aabf-logeqv-ss (b* (((mv a=b new-man) (aabf-logeqv-ss a b man))) (implies (and (aabflist-p a man) (aabflist-p b man) (aabflist-pred a man) (aabflist-pred b man)) (and (aabflist-pred a=b new-man)))))