(aabf-signext-nss n a sign) → a-app-b
Function:
(defun aabf-signext-nss (n a sign) (declare (xargs :guard (and (natp n) (true-listp a)))) (declare (xargs :guard (and))) (let ((__function__ 'aabf-signext-nss)) (declare (ignorable __function__)) (b* (((when (or (zp n) (aabf-syntactically-signext-p a sign))) (list sign)) ((mv first rest &) (aabf-first/rest/end a))) (aabf-scons first (aabf-signext-nss (1- n) rest sign)))))
Theorem:
(defthm trivial-theorem-about-aabf-signext-nss (b* nil (b* ((?ignore (aabf-signext-nss n a sign))) t)) :rule-classes nil)
Theorem:
(defthm true-listp-of-aabf-signext-nss.a-app-b (b* ((?a-app-b (aabf-signext-nss n a sign))) (true-listp a-app-b)) :rule-classes :type-prescription)
Theorem:
(defthm aabf-p-of-aabf-signext-nss (b* ((a-app-b (aabf-signext-nss n a sign))) (implies (and (aabflist-p a man) (aabf-p sign man)) (and (aabflist-p a-app-b man)))))
Theorem:
(defthm aabf-eval-of-aabf-signext-nss (b* ((a-app-b (aabf-signext-nss n a sign))) (implies (and (aabflist-p a man) (aabf-p sign man)) (and (equal (bools->int (aabflist-eval a-app-b env man)) (logapp (nfix n) (bools->int (aabflist-eval a env man)) (endint (aabf-eval sign env man))))))))
Theorem:
(defthm aabf-pred-of-aabf-signext-nss (b* ((a-app-b (aabf-signext-nss n a sign))) (implies (and (aabflist-p a man) (aabf-p sign man) (aabflist-pred a man) (aabf-pred sign man)) (and (aabflist-pred a-app-b man)))))