(bfr-logand-ss a b) → a&b
Function:
(defun bfr-logand-ss (a b) (declare (xargs :guard (and (true-listp a) (true-listp b)))) (let ((__function__ 'bfr-logand-ss)) (declare (ignorable __function__)) (b* (((mv af ar aend) (first/rest/end a)) ((when aend) (bfr-ite-bss af b '(nil))) ((mv bf br bend) (first/rest/end b)) ((when bend) (bfr-ite-bss bf a '(nil))) (c (bfr-and af bf)) (r (bfr-logand-ss ar br))) (bfr-scons c r))))
Theorem:
(defthm true-listp-of-bfr-logand-ss (b* ((a&b (bfr-logand-ss a b))) (true-listp a&b)) :rule-classes :type-prescription)
Theorem:
(defthm bfr-logand-ss-correct (b* ((a&b (bfr-logand-ss a b))) (and (equal (bfr-list->s a&b env) (logand (bfr-list->s a env) (bfr-list->s b env))))))
Theorem:
(defthm bfr-logand-ss-deps (b* ((a&b (bfr-logand-ss a b))) (implies (and (not (pbfr-list-depends-on varname param a)) (not (pbfr-list-depends-on varname param b))) (and (not (pbfr-list-depends-on varname param a&b))))))