(bfr-rem-ss a b) → r
Function:
(defun bfr-rem-ss (a b) (declare (xargs :guard (and (true-listp a) (true-listp b)))) (let ((__function__ 'bfr-rem-ss)) (declare (ignorable __function__)) (bfr-ite-bss (bfr-=-ss b nil) (llist-fix a) (b* (((mv & babs bneg) (bfr-sign-abs-not-s b)) ((mv asign aabs &) (bfr-sign-abs-not-s a)) (m (bfr-mod-ss-aux aabs babs bneg))) (bfr-logext-ns (integer-length-bound-s b) (bfr-ite-bss asign (bfr-unary-minus-s m) m))))))
Theorem:
(defthm true-listp-of-bfr-rem-ss (b* ((r (bfr-rem-ss a b))) (true-listp r)) :rule-classes :type-prescription)
Theorem:
(defthm bfr-rem-ss-correct (b* ((r (bfr-rem-ss a b))) (and (equal (bfr-list->s r env) (rem (bfr-list->s a env) (bfr-list->s b env))))))
Theorem:
(defthm bfr-rem-ss-deps (b* ((r (bfr-rem-ss a b))) (implies (and (not (pbfr-list-depends-on varname param a)) (not (pbfr-list-depends-on varname param b))) (and (not (pbfr-list-depends-on varname param r))))))