(bfr-depends-on k x) → *
Function:
(defun bfr-depends-on (k x) (declare (xargs :guard t)) (let ((__function__ 'bfr-depends-on)) (declare (ignorable __function__)) (bfr-case :bdd (bfr-semantic-depends-on k x) :aig (set::in (bfr-varname-fix k) (acl2::aig-vars x)))))
Theorem:
(defthm bfr-eval-of-set-non-dep (implies (not (bfr-depends-on k x)) (equal (bfr-eval x (bfr-set-var k v env)) (bfr-eval x env))))
Theorem:
(defthm bfr-depends-on-of-bfr-var (equal (bfr-depends-on m (bfr-var n)) (equal (bfr-varname-fix m) (bfr-varname-fix n))))
Theorem:
(defthm no-new-deps-of-bfr-not (implies (not (bfr-depends-on k x)) (not (bfr-depends-on k (bfr-not x)))))
Theorem:
(defthm no-new-deps-of-bfr-and (implies (and (not (bfr-depends-on k x)) (not (bfr-depends-on k y))) (not (bfr-depends-on k (bfr-binary-and x y)))))
Theorem:
(defthm no-new-deps-of-bfr-or (implies (and (not (bfr-depends-on k x)) (not (bfr-depends-on k y))) (not (bfr-depends-on k (bfr-binary-or x y)))))
Theorem:
(defthm no-new-deps-of-bfr-xor (implies (and (not (bfr-depends-on k x)) (not (bfr-depends-on k y))) (not (bfr-depends-on k (bfr-xor x y)))))
Theorem:
(defthm no-new-deps-of-bfr-iff (implies (and (not (bfr-depends-on k x)) (not (bfr-depends-on k y))) (not (bfr-depends-on k (bfr-iff x y)))))
Theorem:
(defthm no-new-deps-of-bfr-ite (implies (and (not (bfr-depends-on k x)) (not (bfr-depends-on k y)) (not (bfr-depends-on k z))) (not (bfr-depends-on k (bfr-ite-fn x y z)))))
Theorem:
(defthm no-deps-of-bfr-constants (and (not (bfr-depends-on k t)) (not (bfr-depends-on k nil))))