Fixtype of signed bytes of size 1.
Function:
(defun sbyte1-equiv$inline (x y) (declare (xargs :guard (and (sbyte1p x) (sbyte1p y)))) (equal (sbyte1-fix x) (sbyte1-fix y)))
Theorem:
(defthm sbyte1-equiv-is-an-equivalence (and (booleanp (sbyte1-equiv x y)) (sbyte1-equiv x x) (implies (sbyte1-equiv x y) (sbyte1-equiv y x)) (implies (and (sbyte1-equiv x y) (sbyte1-equiv y z)) (sbyte1-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm sbyte1-equiv-implies-equal-sbyte1-fix-1 (implies (sbyte1-equiv x x-equiv) (equal (sbyte1-fix x) (sbyte1-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm sbyte1-fix-under-sbyte1-equiv (sbyte1-equiv (sbyte1-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-sbyte1-fix-1-forward-to-sbyte1-equiv (implies (equal (sbyte1-fix x) y) (sbyte1-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-sbyte1-fix-2-forward-to-sbyte1-equiv (implies (equal x (sbyte1-fix y)) (sbyte1-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm sbyte1-equiv-of-sbyte1-fix-1-forward (implies (sbyte1-equiv (sbyte1-fix x) y) (sbyte1-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm sbyte1-equiv-of-sbyte1-fix-2-forward (implies (sbyte1-equiv x (sbyte1-fix y)) (sbyte1-equiv x y)) :rule-classes :forward-chaining)